亚洲综合另类一区二区三区,性做久久久久久久毛片,日本亚洲午夜福利视频,亚洲一区二区三区四区视频在线观看

撥號(hào)18861759551

你的位置:首頁(yè) > 技術(shù)文章 > 如何測(cè)量您的成像系統(tǒng)中的景深

技術(shù)文章

如何測(cè)量您的成像系統(tǒng)中的景深

技術(shù)文章

Gauging Depth of Field in Your Imaging System

Over the years, we have answered countless questions regarding lens performance. Of those questions, none have been more difficult to define than requests for depth of field. The reason for this difficulty has more to do with the vagueness of the question than with the inability to provide a measured or calculated value. Consider for a moment what depth of field ls us. It is the distance by which an object may be shifted before an unacceptable blur is produced. For depth of field to be properly stated, it should contain not only the displacement of an image, but also a specific resolution. The depth of field specification is further complicated by a type of keystoning aberration that often occurs. This result can dramatically affect linear measurements and therefore render depth of field unusable. In this article we will take a closer look at depth of field calculations and compare them to physical measurements using the DOF 1-40 depth of field gauge. The gauge, as we will see later, offers a unique look at what depth of field really means and how we as system designers may wish to quantify this parameter. A simple geometric approximation for depth of field is shown in Figure 1.0. The linear blur (required resolution) Bp, Bm and Bf can be expressed in terms of angular blur by the following equation.

Figure 1

 

Using similar triangles, a relationship can now be made between angular blur and the focus point,

where λ is the aperture of the lens. Solving for δplus and δmin,

The derivation above is very specific to the intended resolution. However, many theoretical derivations of depth of field often assume the lens resolution to be nearly diffraction limited. The most popular of these derivations are based on microscope applications. A typical example for the total depth of field (dplus + dmin) is shown below.

Where λ is the wavelength and NA equals the numerical aperture of the lens.

In order to study depth of field we have put together a simple macro system consisting of a 25mm fixed focal length lens, 8mm spacer and Sony XC-75 monochrome CCD video camera. The system was chosen not for its performance but rather for its common real world implementation. Measurements were performed using the DOF 1-40 target. The target allows us to measure depth of field at either 1, 10, 20 or 40 lp/mm over a maximum depth of 50mm. The flat field resolution of this system is approximay 15 lp/mm at 0.3X primary magnification. For purposes of our experiment, a blur spot resolution of 0.1 mm or 10 lp/mm was chosen. Depth of field measurements were taken at three aperture settings corresponding to f/2, f/4, and f/8. An important point should be noted about aperture settings. The f-number shown on most fixed focal length lenses is calculated with the object at infinity. As a result, we have adjusted our NA and therefore our aperture values for a 95mm working distance.

The values below highlight a number of points to consider. In general our calculated and measured delta d are fairly close. However, the displacement of the image due to defocus aberrations was not predicted by our calculations. This type of displacement error could certainly be problematic if the system contained an auto iris. If we compare our measured results to the delta-theory, we notice a significant variation. As we mentioned earlier, this variation is due to a false assumption concerning system resolution.

Another property that should be noted in our DOF 1-40 observations is the non-uniform magnification seen through the depth of field range. This is a very common problem in most lenses and, as we stated earlier, can yield significant errors if measurements are made throughout the full depth of field range. Edmund Optics provides several ecentric options to correct for this type of error.

In the end, it is the total performance of an optical system that counts. As a full service supplier and manufacturer of optics, illumination, CCD cameras, monitors, mounting, and electronic imaging related products, Edmund Optics has the knowledge and resources to look at your application as a total system. In fact, innovative tools such as the DOF 1-40 have come about from our own in-house need to quantify system performance. So if you are looking for individual components that can be integrated into your system or starting from scratch, our engineers are ready to help.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢(xún)
QQ客服
QQ:17041053
電話(huà)咨詢(xún)
0510-68836815
關(guān)注微信
欧美日韩综合在线一区| 啊啊不要你那痛死爽死了直播一区| 西瓜在线看免费观看视频| 国产成人精品区在线观看| 玖玖资源站无码专区| 久久亚洲精品无码AV宋| 久久久久久高清无码视频| 男人大鸡巴操小鲜肉视频| 欧美一级免费观看| 东京热无码AV一区二区三区| 娇嫩的被两根粗大的np| 非洲人粗大长硬配种视频| 浪潮AV色综合久久天堂| 鸡巴操美女小穴羞羞视频| 国产精品视频一区二区三区分享| 美女荒郊野外找男人靠逼| 中文字幕不卡一区二区免| 一级特黄大片色欧美精品| 男人几把操女人嫩穴| 日本免费无码一区二区到五区| 日本六十五十熟女一级黄色| 国产高欧美性情一线在线| 亚洲综合极品香蕉久久网| 非洲大鸡巴操逼黄色录像| 人妻少妇精品视频12p| 西瓜在线看免费观看视频| 欧美猛男一区二区三区快播| 可以免费看污污片的软件| 最是人间烟火色在线播放| 久久精品国产亚洲av伦理| 最新的精品亚洲一区二区| 被公侵犯人妻少妇一区二区三区| 熟妇丰满大阴户熟妇啪啪| 骚逼嫩鸡巴喷水视频| 骚女人被大吊干视‘| 日本熟妇一区二区三区四区| 三级片成人京东热五月天| 欧美一级特黄大片在线看| 中文字幕人妻一区二区三区人妻| 男生插女生下面流出白色精液视频| 日本a国产精品久久久久|